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hydrostatic curve based on measurements to 98 kbar is shown for comparison 

(43). The curves labelled 3rd, 4th, are fits based on low 

pressure acoustic measurements and finite elastic strain theory (Section 2.33). 

name ly: 

Tr.ese plots show clearly the important features of the compression, 

(1) extremely high amplitude elastic waves, up to 150 kbar 

in Z-cut quartz 

(2) loss of rigidity above the elastic limit, as shown by 

the agreement of the higher pressure shock data with 

extrapolation of the hydrostatic data 

(~) lack of a unique value for the Hugoniot elastic limit. 

T~is behavior implies that yielding is not due to dislocation motion 

as in a ~2tal, but is analogous (or identical) to fracture. It is shown 

below th~t the shear stresses behind the elas:ic shocks approach the theo­

reti ca 1 snear strength of the crys ta 1 1 at ·~i ce. 

T~2 range of the present data is not sufficient to show clearly the 

transformation to stishovite, as indicated by Wackerle's higher pressure 

rr.easuremf;nts. 

2.33 Finite Strain Theory 

Because the strains behind the elastic shocks are relatively large, 

it is of interest to examine the agreement of the data with predictions of 

finite s~rain theory. Predictions are made possible by the work of 

THURSTON (40) and McSKIMIN (39) and thei r co-workers on the thi rd-order 

elastic constants of quartz. Such comparisons should indicate the extent 

to which third-order constants are sufficient to describe the stress-strain 

behavior at strains of the order C7 5 - 10%. The constants are determined 

from precise acoustic measurements at strains of less than 0.1%. ANDERSON (44) 
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has already shown that the second and third-order constants alone give 

reasonably good predictions for hydrostatic compressions of up to about 

15% in quartz, provided the constants are used in the Murnaghan logarithmic 

equation or the Birch equation of state. 

Di sc:-epanci es between the observed and predi cted stress -s trai n 

curves can ~c used alternatively to evaluate fourth and higher order con-

stants, or -::0 examine the effects of adopting alternate defini'cions of 

strain, as suggested by KNOPOFF (45). Finally, to the extent that the 

third-order constants give adequate prediction~ the stresses tangential to 

the shock fronts can be calculated from the observed stresses ;-;ormal to the 

fronts ' and, hence, the shear ,stresses sustained (momentarily) by the crystal 

can be deduced. 

A. Finite Strain Fundamentals* 

Denote the coordinates of a mass element in an initial (unstrained) 

coordinate system by ai, and the coordinates in a final (strained) system 

by Xi' with the transformation given by, 

where (2.13) 

and to is a reference time. ' The Xi are thus Eulerian, or spatial, coordinates 

and the ai Lagrangian, or material, coordinates. 

For this transformation one can derive an expression for the ratio of 

specific volumes: 
aXi 

VIVO = J = ;:;--a 
a S 

*This section is a summary of portions of the theory as presented by 
THURSTON (46) • 

(2.14) 


